Instructions

Formulae

You might need to use these formulae.

(a) The lift stopped at two different floors before I got to floor number 22What floors were they?

.... seconds

. . . . 1 mark

(c) After I got out of the lift at floor number 22, the lift went directly to the ground floor.

It took 45 seconds.

On the graph, show the journey of the lift from floor 22 to the ground floor.

2.	(a)	Paula played four games in a competition. In three games, Paula scored 8 points each time. In the other game she scored no points.	
		What was Paula's mean score over the four games?	
		points	 I mark
	(b)	Jessie only played two games. Her mean score was 3 points. Her range was 4 points.	
		What points did Jessie score in her two games?	
		and	 I mark
	(c)	Ali played three games. His mean score was also 3 points. His range was also 4 points.	
		What points might Ali have scored in his three games? Show your working.	
		and and and	2 marks

3. (a) Any quadrilateral can be split into 2 triangles.

A garden centre sells plants for hedges.The table shows what they sold in one week.

Plants	Number of plants sold	Takings
Beech	125	£212.50
Leylandii	650	£2437.50
Privet	35	£45.50
Hawthorn	18	£23.40
Laurel	5	£32.25
Total	833	£2751.15

(a) What percentage of the total number of plants sold was Leylandii? Show your working.

		••••
	%	 2 marks
(b)	What percentage of the total takings was for Leylandii? Show your working.	
	%	2 marks
(C)	Which is the cheaper plant, Beech or Privet?	
	Show working to explain how you know.	

5. The diagram shows a circle and a square.

(a) The radius of the circle is 12mm.

What is the area of the circle to the nearest mm ² ?	
Show your working.	

		••••
	$\dots \dots \dots mm^2$	 2 marks
(b)	The ratio of the area of the circle to the area of the square is 2:1	
	What is the area of the square to the nearest mm ² ?	
	$\dots \dots \dots mm^2$	 1 mark
(c)	What is the side length of the square?	
	Show your working.	

. mm

. . .

6. A groundsman marks out a football pitch.

m

. m

.

. . . 1 mark

1 mark

2 marks

(a) He makes the pitch 93 metres long, to the nearest metre.What is the **shortest possible** length of the pitch?

(b) He makes the pitch 50 metres wide, to the nearest metre.What is the **shortest possible** width of the pitch?

(c) Des wants to know how many times he should run around the outside of this pitch to be sure of running **at least 3km**.

Use your answer to parts (a) and (b) to find how many times Des should run around the pitch.

You **must** show your working.

7. I am thinking of a point on the dotted grid below.The co-ordinates of my point are (x, y)

You have 3 clues to find which of the dots is my point.

(a) First clue: x > 0 and y > 0

Which dots cannot represent my point?

On the grid below, cross them out like this \varkappa

(b) Second clue: x + y < 4

Which other dots cannot represent my point?

This time, put a square around them like this

. . . . 1 mark

. . . . 2 marks

(c) Third clue: x > y

What are the co-ordinates of my point?

) 🖉)

8. A class collected information about the number of children in each of their families.

The information was displayed in a frequency chart, but you cannot see all the information.

Call the number of families that have two children n

(a) Show that the **total** number of children in all the families is 55 + 2n

. . . . 1 mark

(b) Write an expression for the **total number of families**.

(c) The **mean** number of children per family is **3**

What is the value of n? Show your working.

 $n = \ldots \ldots \ldots$

. . . . 2 marks **9.** ABC and ACD are both right-angled triangles.

(a) Explain why the length of AC is 10 cm.

1 mark

(b) Calculate the length of AD

Show your working.

.... cm

. . . . 2 marks

(c) By how many degrees is angle *x* bigger than angle *y*?
Show your working.

10. I have two bags of counters.

I am going to take one counter at random from either bag A or bag B

I want to get a **red** counter. Which bag should I choose?

Show working to explain your answer.

. . . .

. . . . 2 marks

11. Two satellites circle around the Earth.The distance from the centre of the Earth is:

 $1.53 \times 10^7 \text{ m}$ Satellite A $9.48 \times 10^6 \text{ m}$ Satellite B

Not drawn accurately

(a) What is the minimum distance apart the satellites could be?

Show your working and give your answer in standard form.

	• • • •
m) 2 marks

(b) What is the maximum distance apart the satellites could be?

Show your working and give your answer in standard form.

.... m

. . . . 2 marks **12.** A teacher asked fifty pupils in Year 9:

How much time did you spend on homework last night?

Results:

Time spent on homework (minutes)	Frequency
$0 \leq time \leq 30$	6
$30 < time \leq 60$	14
$60 < time \le 90$	21
90 < time ≤ 120	9
Total	50

(a) Show that an estimate of the **mean** time spent on homework is **64.8 minutes**.

. . . .

. . . . 2 marks

13. The formula for the volume, V, of a square-based pyramid is

$$V = \frac{1}{3}b^2h$$

b is the base length,

h is the perpendicular height.

(a) A square-based pyramid has base length 5cm and perpendicular height 6cm.

What is its volume?

 $V = \ldots \ldots \ldots cm^3$

. . . . 1 mark

(b) A different square-based pyramid has base length 4 cm. Its volume is 48 cm³

What is its perpendicular height?

 $h = \ldots \ldots \ldots$ cm

(c) The volume of another square-based pyramid is 25cm³
 Its perpendicular height is 12cm.

What is its base length? Show your working.

 $b = \dots \text{ cm}$ (d) The diagram shows a triangular-based pyramid. The base is an isosceles, right-angled triangle. The perpendicular height is m Write a formula, in terms of m, for the volume, V, of the pyramid.

- 14. John makes two clay pots.Each pot is fired independently.The probability that a pot cracks while being fired is 0.03
 - (a) Calculate the probability that **both** of John's pots crack while being fired.

Show your working.

(b) Calculate the probability that **only one** of John's pots cracks while being fired.

Show your working.

. . . . 2 marks

. . . .

(c) John has enough clay for 80 pots. He receives an order for 75 pots.

> Does he have enough clay to make 75 pots without cracks? Explain your answer.

KS3/00/Ma/Tier 6-8/P2

END OF TEST