Arc Length
   As long as you’re satisfied with your calculus skills, arc length is a matter of logic. To the ‘somewhere’ on this page there is diagram of a graph under ultra-magnification and it shows an approximation to the length of a small piece of the curve, 
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. You should notice that this approximation is a simple case of Pythagoras and that
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   What this means in terms of differentiation is that if 
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 is made smaller and smaller and smaller, until it’s so small that amoeba are using it as floss then 
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 wont be ‘approximately’ 
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, it will be 
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. At this point the nice curly delta (
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) sign is made into a ‘d’ out of convention so that… 
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   If everything is divided through by 
[image: image9.wmf]2

()

dx

 and rearranged you will find yourself with the equation:
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   Notice anything familiar? It’s just an ordinary old differential isn’t it? You can integrate it with respect to 
[image: image11.wmf]x

 to arrive at:
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Now an example: Find the arc length of the curve with equation 
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I suggest we start by finding 
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, which we can do by differentiating the equation to see that…
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 …and therefore that… 
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…into this equation I can substitute in 
[image: image19.wmf]23

yx

=

 (the curve equation) to get that 
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Knowing these facts, I can begin the mutation process of the arc length integral to see that I’ll be finding:
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Nobody, if they’re honest, likes to see a 4 hanging below a 
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 like that, so I’m just going to nudge the little fella out of the integral in a bit of rearranging, as so…
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I’m also going to make the substitution 
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 - where 
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and then change the limits of the integral so show that:
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 which is equal to 
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Now the rest is a simple integration job; you should find that:


[image: image28.wmf]22

3

2

1

93

u

S

éù

=

êú

ëû

…and that your grand answer is 
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   Taking this a little further – the length of an arc in parametric form can be found by starting from 
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 again, but instead of dividing through by 
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 you should divide through by 
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 and rearrange things to get that:


[image: image33.wmf]22

dsdxdy

dtdtdt

æöæö

=+

ç÷ç÷

èøèø

 and that 
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I’ll warn you though that a lot of parametric form questions, or at least the ones in the book, usually end up with you needing to integrate something like 
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 where you will need to use the substitution 
[image: image36.wmf]sinh

tu

=

… things get a little taxing after that, unless you remember the integral by heart.
   Now we can use our new arc length knowledge and apply it to something slightly different called ‘area of surface revolution’. It goes a little something like this:

   This is just like volume of revolution but instead looks at the surface area. The surface area of a cylinder you should know to be 
[image: image37.wmf]2

rl

p

, where r is the radius of the cross sectional area and 
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 is the length of the cylinder. Well in the following morsel of integration we say that the surface area of a curve which has been rotated about either of the 
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 or 
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 axes is equal to the sum of the surface areas of a whole load of tiny cylinders of small a length which make it up (as shown). 
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The circumference of a cylinder at any height will be given by 
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, where 
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 is equivalent to the cross-sectional radius. Then the length of the cylinder will be given by 
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. The difference in cross sectional area given by this cylinder will be 
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  making the sum of all the areas between a and b 
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…but we know from the previous notes what 
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 is, so another way of writing the area could be (and is):
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Note that everything should be in terms of 
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 so you will be left with something integrateable. Expressing this in parametric form requires you only to exchange the Cartesian 
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 for the parametric 
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. As y will have started being in terms of t, the integral will also be entirely in terms of t. 

How about an example though?

Find the surface area of a sphere using your new area of surface revolution powers.
The equation for a circle is 
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 which can be rearranged as 
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 and then differentiated to get…


[image: image53.wmf]22

dy

yx

dx

=-

   or   
[image: image54.wmf]dyx

dxy

=-

    then   
[image: image55.wmf]2

2

2

dyx

dxy

æö

=

ç÷

èø


You can see from above that we need to find the value of 
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, which, from a bit further above again we can see will be:
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     which in this case is     
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   which is also  
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  or quite simply  
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Now when we stamp this into the surface revolution equation we should find that the 
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s cancel quite satisfyingly, so that integrating between r and –r (the x values the sphere lies between), we arrive at:
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Giving us the answer we want of 
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