Complex Numbers

All complex numbers consist of a real and imaginary part.

The imaginary part is a multiple of i (where i =
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 ).

We often use the letter ‘z’ to represent a complex number eg. z = 3 +5i
The conjugate of z is written as z* or 
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If   z1 = a + bi    then the conjugate of z  (z* )  = a – bi

Similarly if  z2 = x – yi   then the conjugate  z2* = x + yi

z z* will always be real            (as i2 = -1)

For two expressions containing complex numbers to be equal, both the real parts must be equal and the imaginary parts must also be equal.

If  z1 = a + bi  ,  z2 = x + yi   and   2z1 = z2 + 3  then

                                                 2( a + bi) = x + yi + 3

                                 hence        2a + 2bi = x + 3 + yi

                                             so  2a = x + 3 (real parts are equal)

                                            and 2b = y  (imaginary parts are equal)

When adding/subtracting complex numbers deal with the real parts and the imaginary parts separately 

eg.  z1 + z2 = a + bi + x + yi

                  = a + x + (b + y)i

When multiplying just treat as an algebraic expression in brackets

eg. z1 z2 = (a + bi)(x + yi)

              = ax + ayi + bxi + byi2
              = ax  - by + (ay + bx)i              (as i2 = -1)

Division by a complex number is a very similar process to ‘rationalising’ surds – we call it ‘realising’
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Argand Diagrams
We can represent complex numbers on an Argand diagram. This similar to a normal set of x and y axes except that the x axis represents the real part of the number and the y axis represents the imaginary part of the number.



[image: image4]
The argand diagrams allow complex numbers to be expressed in terms of an angle (the argument) and the length of the line joining the point z to the origin (the modulus of z). Hence the complex number can be expressed in a polar form. The argument is measured from the real axis and ranges from –п to п.
so for  z=4+4i
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When in this form some expressions for complex numbers can be drawn as loci.
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This means that the distance between the fixed point 
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z

 and the loci z is a constant value r, thus z is a circle of radius r about.
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This means that the argument of the line between the loci z and the point 
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 has an argument of 
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. Thus the loci z is the line from 
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 at an argument of 
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.
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This means that the line joining the point 
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 to the loci z is equal in length to the line joining 
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 to the loci z. therefore the loci is the perpendicular bisector of the line joining the two points.
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The same as above but rather than the locus being equidistant from both points it is k times further away from 
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 than
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From an argand diagram complex numbers can be express using a modulus and an argument, the component real and imaginary parts of these numbers can then be expressed in a similar way to a resolved vector.
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