Sequences
   Sequences are more of a year 8 thing but you may still need to know them. They’re nothing but sets of coordinates for a line. You may have become familiar with n and s being used in notating them; well I’m going to use 
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 instead. Have a gander at this goose:
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   In any sequence the 
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 row will always be made up of consecutive numbers starting at 1. By 
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 increasing with a constant difference you can see how these constant increments correspond to an increase of
[image: image6.wmf]y

. To find this increase in 
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 you have to draw those little curvy lines beneath the sequence and write down the difference, such that:
   As you can see, the difference is +3 each time. This means that for every 1 
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 goes up 
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 goes up 3. 
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is increasing 3 times faster than 
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, so you write 
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. Notice how that looks just like the equation of a line. To find the constant (c) just do it in the same way as you would for a line, put in a coordinate, (i.e. [1,6]).
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   If 
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 increases with a constant difference, like the one above with a constant difference of +3, then it is said to be a linear sequence and can be solved in exactly the same way each time:

· (e.g.) 
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     (constant difference = -2)            
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coordinate [1, 5]               
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· A sequence may involve a fraction, for example:    
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   To find the formula for this, just deploy your sequence finding techniques for the numerator and denominator separately. You should find that the numerator has a sequence 
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 and that the denominator has a sequence of 
[image: image24.wmf]22

yx

=+

. Now just express them as a numerator and denominator so that:
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   A sequence which doesn’t involve a constant difference at GCSE will most likely be a quadratic sequence – as in one that involves
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. I’ll give you an example:
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   You should see that there isn’t a constant difference between the 
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 values. If the sequence is quadratic, there should be a constant difference between the difference of the 
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 values – in other words, draw two rows of little curvy lines:
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Because there are two sets of differences, the second one being a constant +2, it means that you’re dealing with an 
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 sequence. To find the increment in 
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 you have to divide the constant difference by 2. In this case the constant difference is +2. Meaning that your formula will have an 
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 term of (2/2) 1
[image: image33.wmf]2

x

 or simply just 
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. If the constant second difference was +8, then your formula would have a 4
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 term. The reason for dividing by 2 is a bit tricky to explain well in a sentence, so you’ll have to be content with just accepting it for now.
So far then, the formula is 
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, where the values of m and c are yet to be found.

   Now, write out a sequence for 
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 and underneath that, what values remain for each term when you subtract the 
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 row from the corresponding values of the y row, like so:


[image: image39.wmf]2

2

:1491625

:23456

x

yx

-


   The 
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 row is what remains of the sequence when you’ve accounted for 
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, so you need to find how this increases. It’s blatant that every value on this row is 1 more than 
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, meaning that it has a sequence of 
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The complete formula is found by splicing the two parts together to get
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How about one more example:
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Start by doing the curvy line thing twice and then divide the difference by 2.
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Ok, the second difference is a constant value of +6 so divide this by 2. Low and behold a 
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 term enters the solution. So that 
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.
Now write out a sequence of 
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 and one for what remains when you subtract it from your y terms. Remember that
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 means 3 x 
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What remains has a constant difference of -1, but you should actually notice that it is just 
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 multiplied by -1, giving you a sequence of 
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. C is simply 0.
The formula for this sequence is therefore
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There are a fair few stages to remember when finding quadratic formulas like this, it’s all rather hefty; it’s the last time it makes an appearance in maths though, so learn it well for old time’s sake.
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