Mathematics test

Paper 1
Calculator not allowed

Please read this page, but do not open your booklet until your teacher tells you to start. Write your name and the name of your school in the spaces below. If you have been given a pupil number, write that also.

First name ____________________________
Last name ____________________________
School ________________________________
Pupil number _________________________

Remember

- The test is 1 hour long.
- You must not use a calculator for any question in this test.
- You will need: pen, pencil, rubber, ruler and a pair of compasses.
- Some formulae you might need are on page 2.
- This test starts with easier questions.
- Try to answer all the questions.
- Write all your answers and working on the test paper – do not use any rough paper.
- Check your work carefully.
- Ask your teacher if you are not sure what to do.

For marker’s use only
Total marks ____________________________
Instructions

Answers

This means write down your answer or show your working and write down your answer.

Calculators

You **must not** use a calculator to answer any question in this test.

Formulae

Trapezium

Area = \(\frac{1}{2}(a + b)h \)

Prism

Volume = area of cross-section \(\times \) length
1. (a) A spinner has eight equal sections.

What is the probability of scoring 4 on the spinner?

What is the probability of scoring an even number on the spinner?

(b) A different spinner has six equal sections and six numbers.

On this spinner, the probability of scoring an even number is \(\frac{2}{3} \)

The probability of scoring 4 is \(\frac{1}{3} \)

Write what numbers could be on this spinner.
2. **Four** squares join together to make a bigger square.

(a) **Four** congruent triangles join together to make a bigger triangle.

Draw **two more** triangles to complete the drawing of the bigger triangle.

(b) **Four** congruent trapeziums join to make a bigger trapezium.

Draw **two more** trapeziums to complete the drawing of the bigger trapezium.
(c) Four congruent trapeziums join to make a **parallelogram**.

Draw two more trapeziums to complete the drawing of the parallelogram.

`1 mark`
3. Look at this table.

<table>
<thead>
<tr>
<th>Age (in years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ann</td>
</tr>
<tr>
<td>Ben</td>
</tr>
<tr>
<td>Cindy</td>
</tr>
</tbody>
</table>

Write in words the meaning of each equation below. The first one is done for you.

- \(b = 30 \) Ben is 30 years old
- \(a + b = 69 \)
- \(b = 2c \)
- \(\frac{a + b + c}{3} = 28 \)
4. (a) The number 6 is halfway between 4.5 and 7.5

Fill in the missing numbers below.

The number 6 is halfway between \(\underline{2.8}\) and \(\underline{\ldots}\).

The number 6 is halfway between \(\underline{-12}\) and \(\underline{\ldots}\).

(b) Work out the number that is halfway between \(27 \times 38\) and \(33 \times 38\)

Show your working.
5. Hakan asked 30 pupils which subject they liked best.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Number of boys</th>
<th>Number of girls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maths</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>English</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Science</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>History</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>French</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>total</td>
<td>10</td>
<td>20</td>
</tr>
</tbody>
</table>

(a) Which subject did 20% of boys choose?

(b) Which subject did 35% of girls choose?

(c) Hakan said:

‘In my survey, Science was equally popular with boys and girls’.

Explain why Hakan was wrong.

(d) Which subject was equally popular with boys and girls?
6. (a) When \(x = 5 \), work out the values of the expressions below.

\[
\begin{align*}
2x + 13 &= \ldots \\
5x - 5 &= \ldots \\
3 + 6x &= \ldots
\end{align*}
\]

(b) When \(2y + 11 = 17 \), work out the value of \(y \)
Show your working.

\[
y = \ldots
\]

(c) Solve the equation \(9y + 3 = 5y + 13 \)
Show your working.

\[
y = \ldots
\]
7. This advert was in a newspaper.

It does not say how the advertisers know that 93% of people drop litter every day.

Some pupils think the percentage of people who drop litter every day is much lower than 93%.
They decide to do a survey.

(a) Jack says:

We can ask 10 people if they drop litter every day.

Give two different reasons why Jack’s method might not give very good data.

First reason:

Second reason:
(b) Lisa says:

We can go into town on Saturday morning.
We can stand outside a shop and record how many people walk past and how many of those drop litter.

Give two **different** reasons why Lisa’s method might not give very good data.

First reason:

Second reason:

8. Fill in the missing numbers in the boxes using **only negative numbers**.

\[
\begin{align*}
\phantom{\text{- }} & - = 5 \\
\phantom{\text{- }} & - = -5
\end{align*}
\]
9. You can often use algebra to show why a number puzzle works.

Fill in the missing expressions.

Example:

- Think of a number: n
- Add 4: $n + 4$
- Now add the number you were first thinking of: $n + 4$
- Divide by 2: $\frac{n + 4}{2}$
- Subtract 2: $\frac{n + 4}{2} - 2$ or $\frac{n + 4 - 4}{2}$
- The answer is the number you were first thinking of: $\frac{n + 4 - 4}{2}$ or $\frac{n}{2}$
10. The diagram shows a rectangle that just touches an equilateral triangle.

(a) Find the size of the angle marked x

Show your working.

(b) Now the rectangle just touches the equilateral triangle so that ABC is a straight line.

Show that triangle BDE is isosceles.
11. Three types of mice might come into our homes. Some mice are more likely to be found in homes far from woodland. Others are more likely to be found in homes close to woodland. The bar charts show the **percentages of mice** that are of each type.

Key
- Yellow-necked mice
- Wood mice
- House mice

Type of mouse found

![Bar chart showing percentages of mice found far from woodland and close to woodland.](chart.png)
Use the bar charts to answer these questions.

(a) About what percentage of mice in homes **close to woodland** are **wood mice**?

\[\text{........... \%} \]

(b) About what percentage of mice in homes **far from woodland** are **not wood mice**?

\[\text{........... \%} \]

(c) The **black** bars show the percentages for house mice. One of the black bars is taller than the other.

Does that mean there **must be more** house mice in homes **far from woodland** than in homes close to woodland?

Tick (✓) Yes or No.

Yes [] No []

Explain your answer.
12. The graph shows a straight line. The equation of the line is $y = 3x$

(a) Does the point $(25, 75)$ lie on the straight line $y = 3x$?

Tick (✓) Yes or No.

Yes [] No []

Explain how you know.
(b) Write the coordinates of the point that lies on both the straight lines $y = 4x + 1$ and $y = 6x - 4$

You **must** show your working.

\[(,)\]

3 marks

(c) Explain how you can tell there is no point that lies on both the straight lines $y = \frac{1}{2}x + 3$ and $y = \frac{1}{2}x + 5$

1 mark
13. \(\frac{1}{3}, \frac{1}{8}, \frac{1}{5} \) are all examples of unit fractions.

All unit fractions must have
- a numerator that is 1
- a denominator that is an integer greater than 1

The ancient Egyptians used only unit fractions.
For \(\frac{3}{4} \), they wrote the sum \(\frac{1}{2} + \frac{1}{4} \)

(a) For what fraction did they write the sum \(\frac{1}{2} + \frac{1}{5} \)?
Show your working.

(b) They wrote \(\frac{9}{20} \) as the sum of two unit fractions.
One of them was \(\frac{1}{4} \)

What was the other?
Show your working.

\[\text{1 mark} \]
(c) What is the biggest fraction you can make by adding two different unit fractions? Show your working.

14. The subject of the equation below is p

$$p = 2(e + f)$$

Rearrange the equation to make e the subject.

$$e =$$
15. The diagram shows the locus of all points that are the same distance from A as from B. The locus is one straight line.

(a) The locus of all points that are the same distance from \((2, 2)\) and \((-4, 2)\) is also one straight line. Draw this straight line.

(b) The locus of all points that are the same distance from the \(x\)-axis as they are from the \(y\)-axis is two straight lines. Draw both straight lines.
(c) Look at points C and D below.

Use a straight edge and compasses to draw the locus of all points that are the same distance from C as from D.

Leave in your construction lines.
16. Cars more than three years old must pass a test called an MOT.

The testers measure the right and left front wheel brakes, and give each brake a score out of 500.

Then they use the graph.

For example: A car has $R = 300$, $L = 350$.
$(300, 350)$ is in the white region, so the car passes this part of the test.
(a) A man takes his car to be tested.

\[L = 200 \]

Approximately, between what values does \(R \) need to be for his car to pass this test?

\[\ldots \ldots \text{ and } \ldots \ldots \]

1 mark

A different part of the test uses \(R + L \)

To pass, \(R + L \geq 400 \)

(b) On the graph, draw the straight line \(R + L = 400 \)

Then shade the region where the car **fails**, \(R + L < 400 \)

1 mark

(c) If \(L = 200 \), between what values does \(R \) need to be to pass **both** parts of the test?

\[\ldots \ldots \text{ and } \ldots \ldots \]

1 mark
END OF TEST