Ma

KEY STAGE

TIER **5–7**

2007

Mathematics test

Paper 1

Calculator not allowed

First name		
Last name		
Last Haille		_
School		

Remember

- The test is 1 hour long.
- You must not use a calculator for any question in this test.
- You will need: pen, pencil, rubber, ruler and a pair of compasses.
- Some formulae you might need are on page 2.
- This test starts with easier questions.
- Try to answer all the questions.
- Write all your answers and working on the test paper do not use any rough paper. Marks may be awarded for working.
- Check your work carefully.
- Ask your teacher if you are not sure what to do.

For marker's use only

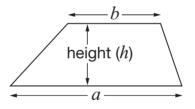
TOTAL MARKS

Instructions

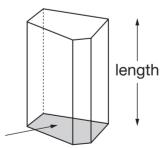
Answers

This means write down your answer or show your working and write down your answer.

Calculators


You **must not** use a calculator to answer any question in this test.

Formulae


You might need to use these formulae

Trapezium

Area =
$$\frac{1}{2}(a+b)h$$

Prism

area of cross-section

Volume = area of cross-section × length

1.	(a)	When $x = 8$, what is the value of $5x$?
		Tick (✓) the correct box below.
		5 13 40 58 None of these
	(b)	When $x = 8$, what is the value of $3x - x$? Tick (\checkmark) the correct box below.
		0 3 16 30 None of these
	(c)	When $x = 8$, what is the value of x^2 ? Tick (\checkmark) the correct box below.
		8 10 16 64 None of these I mark

KS3/07/Ma/Tier 5–7/P1 3

2. Lisa uses a grid to multiply 23 by 15

×	20	3
10	200	30
5	100	15

$$200 + 100 + 30 + 15 = 345$$

Answer: 345

Now Lisa multiplies two different numbers.

Complete the grid, then give the answer below.

×		40	3
30			
	600		18

4

Answer:		
MOCMOR		
ALISWEL.		

KS3/07/Ma/Tier 5-7/P1

3. Fred has a bag of sweets.

- 3 yellow sweets
- 5 green sweets
- 7 red sweets
- 4 purple sweets
- 1 black sweet

He is going to take a sweet from the bag at random.

(a) What is the **probability** that Fred will get a **black** sweet?

1 mark

(b) Write the missing **colour** in the sentence below.

The probability that Fred will get a _____ sweet is $\frac{1}{4}$

5

4. Write a number in each box to make the calculations correct.

1 mark

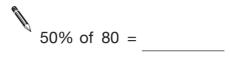
_	=	-8
	J	

1 mark

5. A rectangle has an area of 24 cm²

How long could the sides of the rectangle be?

Give three different examples.



_____ cm and ____ cm

_____ cm and ____ cm

____ cm and ____ cm

6. (a) Write the missing numbers.

2 marks

(b) Work out 56% of 80You can use part (a) to help you.

Look at this equation. 7.

$$y = 2x + 10$$

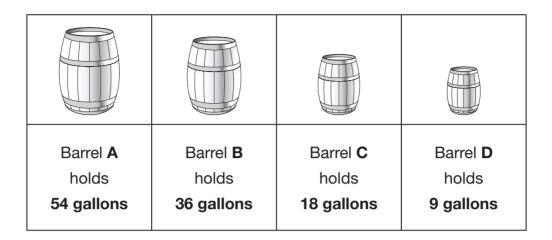
When x = 4, what is the value of y?

1 mark

(b) When x = -4, what is the value of y?

1 mark

Which equation below gives the **same** value of y for both x = 4 and x = -4? Put a ring round the correct equation.


$$y = 2x$$

$$y = 2x \qquad \qquad y = 2 + x \qquad \qquad y = x^2 \qquad \qquad y = \frac{x}{2}$$

$$v = x^2$$

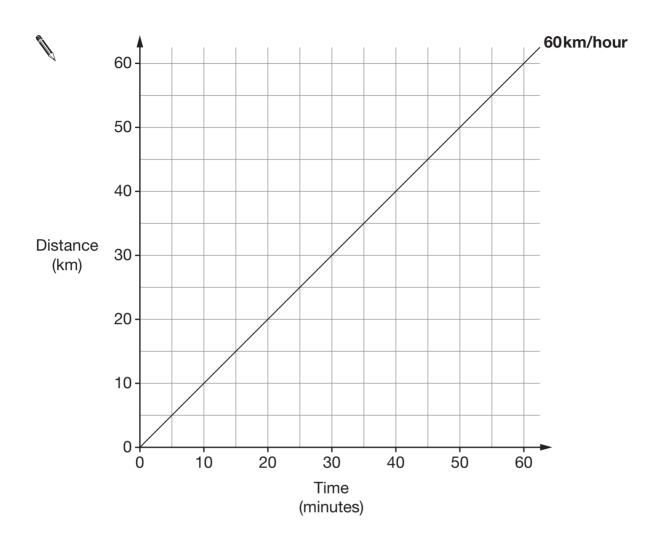
$$y = \frac{x}{2}$$

8. The diagram shows four different sized barrels.

Write the missing fractions as simply as possible.

The first one is done for you.

Barrel **C** holds $\frac{1}{2}$ of the amount barrel **B** holds.


Barrel **D** holds of the amount barrel **B** holds.

Barrel **C** holds of the amount barrel **A** holds.

Barrel **B** holds of the amount barrel **A** holds.

9

9. The line on the graph below represents a speed of 60km/hour.

(a) Draw a line on the graph to represent a speed of **30 km/hour**.

Label the line by writing 30km/hour.

1 mark

(b) Now draw a line on the graph to represent a speed of 120km/hour.

Label the line by writing 120km/hour.

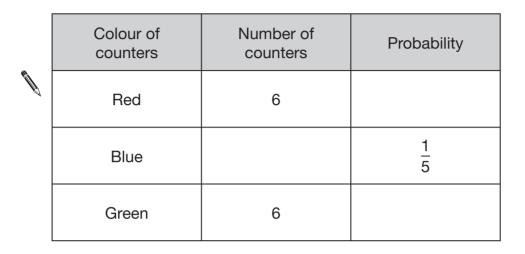
10. (a) In this design, the ratio of grey to black is 3:1

What percentage of the design is black?

_____%

1 mark

(b) In this design, 60% is grey and the rest is black.

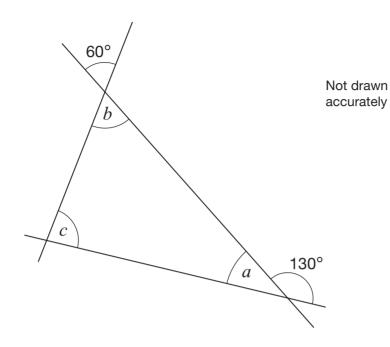

What is the ratio of grey to black?

Write your ratio in its simplest form.

_____: ____

- **11.** In a bag there are only red, blue and green counters.
 - (a) I am going to take a counter out of the bag at random.Complete the table below.

2 marks


(b) Before I take a counter out of the bag, I put one extra blue counter into the bag.
What effect does this have on the probability that I will take a red counter?

Tick (\checkmark) the correct box.

The probability has increased.
The probability has decreased.
The probability has stayed the same.
It is impossible to tell.

12. The diagram shows three straight lines.

Work out the sizes of angles a, b and c

Give reasons for your answers.

 $a = ^{\circ}$ because

1 mark

b =

because

1 mark

c =

because

13. (a)	Some of the fractions below are smaller than $\frac{1}{9}$	
	Tick (✓) them.	

	1
	10

	4
	9

	1
	2

1		
100		

1
_
8

(b) To the nearest per cent, what is $\frac{1}{9}$ as a percentage? Tick (\checkmark) the correct percentage.

10%

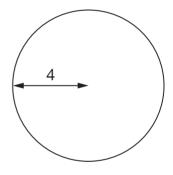
1 mark

(c) Complete the sentence below by writing a **fraction**.

 $\frac{1}{9}$ is half of

14. Solve this equation.

$$2(2n + 5) = 12$$

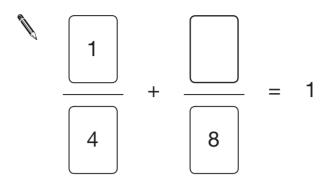

n = _____

2 marks

15. Kevin is working out the **area** of a circle with **radius 4**

He writes:

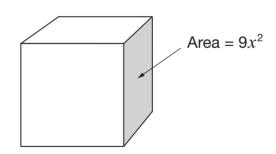
Area =
$$\pi \times 8$$


Explain why Kevin's working is wrong.

1 mark

15

16. Write the missing numbers in these fraction sums.



1 mark

1 mark

17. Look at the cube.

The area of a **face** of the cube is $9x^2$

Write an expression for the total surface area of the cube.

Write your answer as simply as possible.

18. Chris read the first 55 numbers from a book of random numbers.

As he read each number he recorded it in the diagram below.

0	5	9 3 2 1 9 7 2 8 6 7	9	8	3	4	1	
1	6	3	1	0	3			
2	8	2						
3	1	1	6	9	3			
4	6	9	9	4	7	0		
5	5	7	7	6				
6	0	2	8	4	8	0	3	5
7	6	8	0	1	5	4		
8	6	6	9	2	8	5	7	
9	6	7	8	0	0			

(a) What was the largest number he recorded?

(b) Explain how Chris could change the diagram to make it easier for him to find the **median** of his data set.

19. Here is the rule to find the **geometric mean** of two numbers.

Multiply the two numbers together, then find the **square root** of the result.

Example:

geometric mean of 4 and 9 =
$$\sqrt{4 \times 9}$$

$$= \sqrt{36}$$

(a) For the two numbers 10 and x, the geometric mean is 30
What is the value of x?

1 mark

(b) Reena says:

'For the two numbers **-2** and **8**, it is **impossible** to find the geometric mean.'

Is Reena correct?

Explain your answer.

W

20. (a) **Draw lines** to match each nth term rule to its number sequence.

nth term

Number sequence

4*n*

4, 7, 12, 19, ...

 $(n + 1)^2$

4, 8, 12, 16, ...

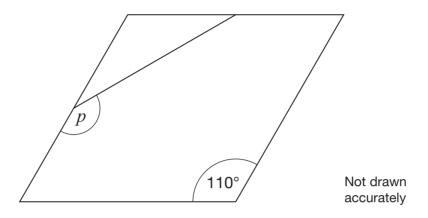
 $n^2 + 3$

4, 9, 16, 25, ...

n(n + 3)

4, 10, 18, 28, ...

2 marks


(b) Write the **first four** terms of the number sequence using the nth term rule below.

 $n^3 + 3$

_, ___, ___,

21. The diagram shows a **rhombus**.

The **midpoints** of two of its sides are joined with a straight line.

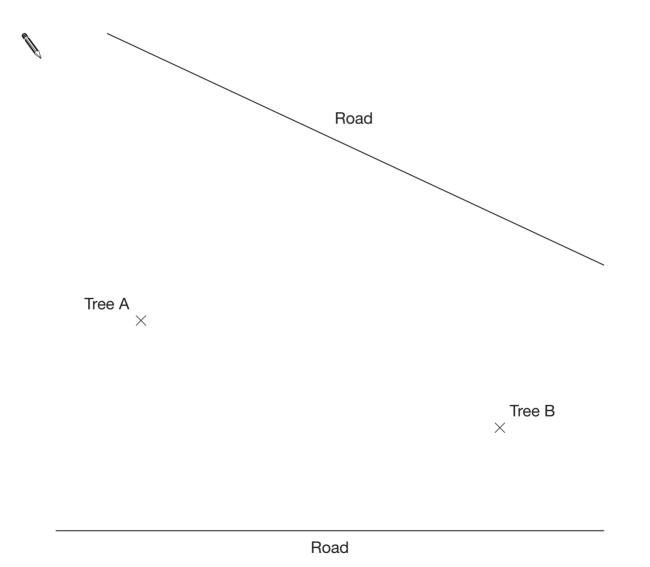
What is the size of angle p?

22. A bag contains counters that are **red**, **black**, or **green**.

 $\frac{1}{3}$ of the counters are **red**

 $\frac{1}{6}$ of the counters are **black**

There are **15 green** counters in the bag.


How many **black** counters are in the bag?

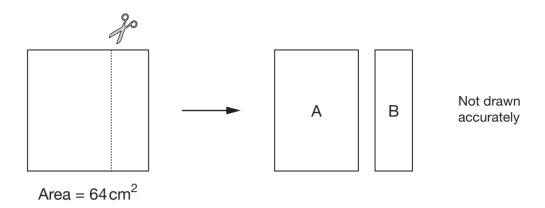
23. Here is a plan of some land.

There will be a fence that is always the **same distance** from tree A as from tree B, going all the way from one road to the other road.

Use compasses and a straight edge to show accurately on the plan where the fence will go.

You must leave in your construction lines.

24. Work out the values of m and n


$$5^8 \times 5^4 = 5^m$$

1 mark

$$\frac{5^8}{5^4} = 5^n$$

25. A square of area 64cm² is cut to make two rectangles, A and B.

The ratio of area A to area B is 3:1

Work out the dimensions of rectangles A and B.

26. A teacher has some coins in his pocket.

He is going to take one of the coins at random.

He says:

There are **more than four** coins in my pocket.

The total value of the coins is 25p.

The probability that I will take a 1p coin is $\frac{1}{4}$

List all the coins that must be in his pocket.

•

END OF TEST

END OF TEST